Setting and flexural properties of metal-resin composite using Ag-Cu particles as filler and chemical accelerator.

نویسندگان

  • Hiroko Soma
  • Yukio Miyagawa
  • Hideo Ogura
چکیده

A metal-resin composite material was experimentally prepared by mixing a powder consisting of Ag-Cu particles and BPO with a paste consisting of UDMA-based monomer and 4-META in the absence of tertiary amine. The working time and setting time were mainly affected by the amounts of 4-META, BPO and metal particles, most of them fulfilling the requirements for working time and setting time specified in ISO 4049:2000 in the present experimental conditions. The flexural strength ranged from 49.6 MPa to 77.8 MPa, and the highest value was obtained when the 4-META concentration was high and metal particle content was low. The flexural modulus of elasticity, ranging from 6.7 GPa to 11.9 GPa, significantly increased as the 4-META concentration and metal particle content increased. Based on its mechanical properties, this metal-resin composite in which metal particles are involved in the polymerization initiation system has the potential to be used as a dental restorative material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of metal-resin composite restorative material. Part 3. Flexural properties and condensability of metal-resin composite using Ag-Sn irregular particles.

Powder-liquid type metal-resin composites, using Ag-Sn irregular particles as the filler, 4-META as coupling agent and UDMA + TEGDMA as resin matrix, were experimentally prepared under 9 different conditions (three different particle sizes and three different filler contents). The flexural strength and flexural modulus were measured. Three different irregular particle size MRCs without redox-in...

متن کامل

Development of metal-resin composite restorative material. Part 4. Flexural strength and flexural modulus of metal-resin composite using Ag-In alloy particles as filler.

The flexural strength and flexural modulus of an experimental metal-resin composite, which used Ag-In alloy particle as the filler, were evaluated. The effect of acid treatment and heat treatment on the Ag-In alloy particle was investigated. The flexural strength of the experimental metal-resin composites ranged from 65.5 MPa to 91.0 MPa. The flexural strength of the metal-resin composite incre...

متن کامل

Preparation and characterization of Epoxy/Lead oxide nano-composite for shield against gamma and X-rays

Polymer nano-composites are a group of materials that represent proper mechanical, chemical, thermal and optical properties due to the presence of certain percentages of a filler in a polymeric matrix. In this study lead oxide nanoparticles were prepared by direct precipitation method. Then the lead oxide-epoxy resin nanocomposite was prepared by mixing (without solvent) with different weight p...

متن کامل

Wear and flexural strength comparisons of alumina/feldspar resin infiltrated dental composites.

INTRODUCTION Incorporating a feldspar chemical bond between alumina filler particles is expected to increase the wear-resistant and flexural strength properties. AIMS AND OBJECTIVES An investigation was carried out to evaluate the influence of the feldspar chemical bonding between alumina filler particles on wear and flexural strength of experimental alumina/feldspar dental composites. It was...

متن کامل

Synthesis of new dental nanocomposite with glass nanoparticles

Objective(s): The aim of this study was to synthesis new dental nanocomposites reinforced with fabricated glass nanoparticles and compare two methods for fabrication and investigate the effect of this filler on mechanical properties. Materials and Methods: The glass nanoparticles were produced by wet milling process. The particle size and shape was achieved using PSA and SEM. Glass nanoparticle...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dental materials journal

دوره 22 4  شماره 

صفحات  -

تاریخ انتشار 2003